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not involve the real characterist ics of  a spec imen 
except its d ispers ion capabil i ty.  The components  
associated with the real characterist ics of  the speci- 
men  crystal, namely  the mosaic  spread and its phy- 
sical d imensions ,  must  be long to a different group 
whose interact ions are model led  by convolution.  

We are grateful  to Dr J. K. Mackenzie  for extensive 
discussions on matters of  convolution.  
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Abstract 

Corrections for secondary  extinction evaluated from 
the diffraction intensit ies for equivalent  reflections 
with different path lengths provide an independen t  
check on values that min imize  differences between 
observed and  calculated structure factors. Com- 
par ison of  equivalent  intensit ies also avoids any 
ext inct ion-parameter  bias,  which originates in corre- 
lat ion of  the extinction corrections with bonding-  
electron contr ibut ions to X-ray structure factors. Cor- 
rections from the compar i son  of  equivalent  reflections 
for several X-ray diffraction studies on small  crystals 
of  ionic compounds  are marked ly  less than  those that 
min imize  differences between observed and calcu- 
lated structure factors. The discrepancies  that  origi- 
nate in ext inct ion-parameter  bias are exacerbated by 
the unfavourable  form of  the statistical dis t r ibut ion 
funct ion for the residuals  when  differences between 
observed and calculated structure factors are mini-  
mized. Analysis  of  intensities for equivalent  reflec- 
tions, a l though more demanding  experimentally,  pro- 
vides least-squares residuals closer to the normal  
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distr ibution required for reliability in nonl inear  least- 
squares processes. 

Introduction 

The k inemat ic  theory of  diffraction, readily derived 
from the first Born approximat ion ,  assumes that the 
radiat ion is diffracted no more than once in a crystal. 
At the Bragg condit ion,  the diffracted beam is 
necessari ly oriented so that second- and higher-order  
elastic coherent  scattering occurs. Kinemat ic  theory 
assumes the scattering contr ibut ions to be so small  
that second- and  higher-order  processes can be 
neglected. This assumpt ion  is valid and accurate for 
weak reflections from small  crystals. In pr inciple ,  
measured  structure factors for stronger reflections 
may  be corrected for high-order  components  to the 
scattering by per turbat ion techniques,  i f  k inemat ic  
theory is obeyed approximately .  

Estimates of  extinction corrections independen t  of  
any structural model  have been reported for crystals 
in the form of  large slabs cut paral lel  to a desired 
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face (Bragg, James & Bosanquet, 1921; Grttlicher, 
1968; Grttlicher & Knrchel, 1980; Grttlicher & 
Vegas, 1988). As it is assumed that extinction can be 
modelled by an exponential function, these estimates 
involve a linear extrapolation to zero path length from 
a plot of log I versus t, the total beam path length. 
This method can be applied to measurements from 
small crystals using standard diffractometry, but the 
extended extrapolations required in that case limit 
the accuracy of the technique (Spadaccini, 1989). 

One aspect of the Grttlicher & Vegas (1988) study 
of MgCO3 is particularly relevant here. In data correc- 
ted for secondary extinction by extrapolation, the 
calculated structure factor Fc for the strong reflections 
was systematically larger than the observed value Fo. 
The authors attributed this to primary extinction but 
did not provide independent evidence to support the 
diagnosis. 

A number of correction formulae for analysing 
extinction in small crystals, based on different 
descriptions of the scattering process, have been 
devised. The widely applied treatment given by 
Zachariasen (1967) has been extended by Becker & 
Coppens (1974). Their correction formulae for secon- 
dary extinction contain parameters related to the 
mosaic distribution of microdomains, such as its 
angular half-width, which must be determined in 
order to evaluate the extinction corrections. 

In most analyses of extinction for small crystals so 
far, the parameters in the correction formulae have 
been determined by least-squares minimization of a 
weighted sum of squares of differences between 
observed and calculated structure factors. The prem- 
ises that justify least-squares processes (Yamane, 
1973) are not necessarily valid when determining 
extinction corrections as part of the structure 
refinement. Thus, it is not uncommon for a modest 
change to the weight of a strong reflection to change 
the extinction corrections by amounts that standard 
tests indicate to be significant. 

On one hand, inaccurate extinction corrections are 
of minor importance when determining structural 
geometry, because correlation between extinction 
parameters and atomic coordinates in least-squares 
analyses of diffraction data is weak. On the other 
hand, the accuracy of Fourier coefficients for strong 
low-order Bragg reflections, which are crucial when 
measuring deformation densities, depends strongly 
on the extinction corrections. These corrections must 
be reliable for charge-density studies. 

Reliable extinction corrections, which require high 
accuracy in the measured diffraction intensities, also 
depend on the validity of the statistical procedures 
used when determining extinction-parameter values 
from the measurements. The principles are not restric- 
ted to any particular form of extinction formula. Their 
consequences can therefore be illustrated by reference 

to the Zachariasen (1967) treatment, which is 
mathematically convenient because of its simplicity. 

Zachariasen's theory 

The basic expression is 

F 2 -1 2 = y  F, , ,  

where F~ is the kinematic structure factor squared, 
y-1 the extinction correction and F~ the measured 
structure factor squared before correction. 

In the isotropic secondary (type I) theory of 
Zachariasen employed in this illustration, the extinc- 
tion factor has the simple form 

y = ( l + 2 x ) - U 2 = ( l + 2 r * T Q )  -1/2, (1) 

where T is the mean path length and, for unpolarized 
X-rays, 

Q = ( e 4 / m 2 c 4 V 2 ) ( A  3/sin 20) 

x[(1 -q-cos 4 20)/(1 +cos 2 20)]F 2 , 

where e, m, c, V, A and 0 are the electron charge, 
electron mass, velocity of light, unit-cell volume, radi- 
ation wavelength and Bragg angle, respectively. 

Thus, x=r*TrG(s)F~, where s is the reciprocal- 
lattice vector and all the geometric factors and conver- 
sion constants are contained in the factor 

G( s) = ( e2/ mc 2 V)2A 3(p2L/pl). 

Here, L is the Lorentz factor, 1/sin20, and Pn = 
1 + cos 2n 20. This analysis readily extends to polarized 
X-rays and neutron diffraction, by substitution of the 
appropriate expression for G(s). 

Least-squares structure refinements 

The standard least-squares procedure for analysing 
crystal structures minimizes a residual of the type 

R(F)  = ~  w(F)(IFoI-IF~IY 
i 

o r  

R(F2) = ~  w(F2)(F 2 -  Fc),2 2 
i 

where the summations are over the independent 
reflections and the weights are reciprocals of the 
variances 

w(F)=o-2(Fo)  and w(F2)=tr-2(F2). 

The conditions that apply to such analyses are those 
described by Yamane (1973). Structural parameters 
determined from the corresponding normal equations 
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will be best linear unbiased estimates with minimum 
variance if the residuals w'/2(F)(IFoI-IGI) or 
w~/2(F2)(F2-F 2) are distributed randomly about 
zero, by the Gauss-Markov theorem. If the residuals 
obey the stronger condition of being normally dis- 
tributed about zero, the minimum-variance param- 
eters satisfy the principle of maximum likelihood. 
The stronger condition can be guaranteed if the 
residuals fulfil the premises of the central limit 
theorem, which are that each residual receives com- 
parable contributions from a large number of sources, 
with minimal constraints on the statistical distribution 
for each component.  

It can reasonably be argued that the central limit 
theorem holds for least-squares refinements of sets 
of structure factors with errors dominated by Poisson 
counting statistics, having comparable contributions 
from systematic errors in the measurements and from 
the shortcomings of the theoretical model for the 
structure factors. In standard crystal structure analy- 
ses, this holds well for the high-order Bragg reflec- 
tions, which predominantly determine atomic posi- 
tions and vibration amplitudes. As high-order reflec- 
tions are not much affected by extinction, or by the 
redistribution of electron density due to chemical 
bonding, standard methods of statistical inference 
apply to most determinations of atomic positions and 
vibration amplitudes. 

It is less obvious that the central limit theorem 
applies to strong low-order structure factors with 
large extinction contributions that dominate a param- 
eter determination. The effect of extinction on struc- 
ture factors is very far from normally distributed. 
Every extinction contribution to (Ifol-IFcl) has a 
negative sign. It is evident from Zachariasen's deriva- 
tion that the (1 +2x)  -~/2 form for y in (1) holds only 
in the limit that 2x < 1, for all structure factors. If 
that inequality is satisfied for the strong Bragg reflec- 
tions, which are very limited in number for most 
structures, then 2x << 1 for most structure factors. The 
effects of extinction will be appreciable only for the 
few large structure factors. 

What is relevant to the reliability of the nonlinear 
least-squares analysis, of course, is not the total 
extinction correction, but the distribution of the 
residuals after extinction corrections have been 
applied. For the statistical analysis to be valid, the 
residuals must be linear functions of errors of the 
order of the uncertainty in the extinction parameters. 
Hampel, Ronchetti, Rousseeuw & Stahel (1986), 
when discussing conditions under which the Gauss-  
Markov condition could provide the minimum vari- 
ance for all unbiased estimators, comment: 'Linearity 
is a drastic restriction. The least squares estimator is 
optimal in the class of all unbiased estimators only 
if the errors are normally distributed. Restriction to 
linear estimators can be justified only by normality 

(or simplicity). The normal model is never exactly 
true, and in the presence of small departures from 
the normality assumption on the errors the least 
squares procedures (estimators and tests) lose 
efficiency drastically'. 

The residuals for the weak reflections are small. 
For the strong reflections, very precise corrections are 
necessary if all their residuals are to fall within the 
linear range. How can we determine whether the 
extinction corrections are sufficiently accurate to 
ensure that an unbiased normal distribution has been 
achieved? In the case of X-ray diffraction, the param- 
eters for the standard method of determining extinc- 
tion corrections will be biased to some degree by real 
differences between Ifol and IFcl for the strong reflec- 
tions, resulting from the redistribution of electrons 
by bonding. It is unreasonable to argue that such 
differences are small when correcting for extinction 
in a charge-density experiment that has their precise 
measurement as its principal objective. This difficulty 
is further compounded if the term F 2 within the 
extinction factor y=(l+2r*F2kQ) -~/2 is approxi- 
mated by F 2 when r* is determined as part of a 
crystal-structure-factor refinement - an approxima- 
tion that is sometimes used to simplify the normal 
equations when determining r* during standard least- 
squares structure analyses. 

We seek a check of the validity of the extinction 
parameters from standard structure refinements that 
is independent  of model structure factors. Given any 
extinction formalism such that the kinematic structure 
can be expressed as an explicit function of the 
measured structure factor, extinction corrections with 
that independence can be determined. These provide 
a check on extinction corrections determined by stan- 
dard methods. These unbiased estimators may be 
useful in their own right, if they are sufficiently 
precise. 

r* from equivalents 

The first stage in seeking model-independent extinc- 
tion corrections is to eliminate any dependence of 
the extinction formula on a model for the structure. 
The basic Zachariasen type-I equation rearranges to 

x 2 = (1 + 2x)[r* 7"G(s)F2] 2, 

which solves for x=x2+x(x2+l)  1/2, where X = 
r*TG(s)Fam. 

In this form, the extinction factor y = (1 +2x)  -1/2 
is independent  of the calculated structure factor. 

If the intensities for symmetry-equivalent reflec- 
tions with different path lengths have been measured, 
the Zachariasen secondary-extinction coefficient r* 
may be determined by analysing the variation among 
the absorption-corrected intensities. The least- 



664 EXTINCTION CORRECTIONS FROM EQUIVALENT REFLECTIONS 

squares sum to be minimized in this procedure is 

Re=~i {~e we[FZk(e)-(F2)e]2 } 
i 

: ~ i  (~e ( W e f 2 k f 2 k )  

- { [ ~  weF~(e)]2/~ we}), (2) 

where (F~,>, Y e 2 -, 2 = WeFk(e)/Ze We and we = o" -(Fm)~ 
is the reciprocal of the variance of the measured 
structure factor squared. The inner summations are 
over the equivalent reflections. The outer summations 
are over all independent reflections in the sample. 
The minimum variance occurs for a value of r* at 
which the first derivative of the variance quadratic 
Re vanishes. 

For simplicity, r* is first assumed to be isotropic 
and so is a scalar variable. Minimizing Re with respect 
to r* requires that aRe/ar*= o, which on expanding 
Re about a trial value of r* yields the correction 

6r* = E [(-~,/;UX2) - / 4 ]  

( ) x ~ { ~ : , + ~ - [ ( ~ + ~ , G ) / ~ 2 ] }  , (3) 
i 

which updates the r* value assumed initially. The 
procedure can be iterated to convergence. After 
inversion of the normal-equations matrix for the 
least-squares procedures, the reciprocal of the vari- 
ance is 

o -  Z(r*) = E/?s +/76 - [(/7~ + ~ l  ~ 7 ) / , ~ 2 ] .  
i 

The summations in (3) and (4) are 

21= E WeF2=~, WeF2(x/x) 
e e 

(4) 

"~'2 -- E We 
e 

23 = 7] we(aF~lar*) 
e 

= E  weF~[x/r*(x 2+ 1)'/21 
e 

24 = E weF~(aFZkl Or*) 
e 

weFmFm[ x /X r (X + 1) = E  ~ 2 2 . 2 , / 2 ]  
e 

25 = 
e 

=E 
e 

we(a FE / or*)( a F2k/ ar*) 

2 2 2 , 2  2 weFmFm[x / r  (X +1)] 

e 

= Y. w e F ~ F ~ [ x x / r * 2 ( %  z + 1)3/2] 
e 

27= Z we(a2F~/O r*2) 
e 

= Y'. weFZ[x2/r*2(X z + 1)3/2]. 
e 

As each term "~4, "~5, "~6, "a~l'g~3, 2 2  and 2~Z7 in these 
expressions is quadratic in F 2 , the stronger reflection 
intensities should dominate the analysis. 

To apply this method to an alternative extinction 
formula, r* is replaced by the appropriate alternative 
extinction parameter and the right-hand expressions 
for Z, ,  2;3, 24, 2;5, "g~6 and 27 are adapted to include 
the corresponding derivative expression. To extend 
the treatment to anisotropic extinction, r* is replaced 
by the equivalent second-rank tensor, derivatives of 
F 2 with respect to the unique elements of that tensor 
are formed, sums corresponding to terms 23, "g~4, "~5, 

2;6 and ~7 are evaluated and the set of simultaneous 
equations equivalent to (3) is solved. 

In the application of the Zachariasen procedure, 
it is convenient to rearrange the expression for F~ 
to obtain F 2 as 

F 2 = [ l + 2 r * -  2 1/2 2 TG(s)Fk] Fm=[X+(X 2+ 1)'/2]FL, 

while the variance in the squared kinematic structure 
factor determined is 

~2(F~)={2x+[Z/(x2+ 1)'/2] + ( Z +  1)'/2}2~2(z~) 
2 2 +FmF,,(x/r*) 2 

x {I + [X/(X 2 + I)'/2]}2@2(r*). 
The validity of the method was verified by analys- 

ing simulated data with a stand-alone program. 
Intensities were generated for a range of independent 
kinematic structure factors assuming various degrees 
of extinction for equivalent reflections with different 

values. Equation (3) was iterated until the shift 3r* 
was less than 0.001 times tr(r*). In all cases, minimiz- 
ation of the expression defined in (2) converged 
rapidly towards the correct r* value. Tests with noise 
added to the initial data confirmed that the r* determi- 
nation was not excessively sensitive to random error. 

The stand-alone routine was then tested on real 
diffraction data for several crystals, including small 
sets consisting of strong reflections only and larger 
sets consisting of both strong and weak intensities. 
The results confirmed that the refinement process is 
dominated by the extinction-affected intense reflec- 
tions. The much larger number of weaker reflections 
contribute very little to the least-squares normal 
equations in these analyses, as expected. 

. 

Applications 

This procedure, re-implemented by du Boulay (1992) 
to the specifications of the XTAL system of crystallo- 
graphic programs (Hall & Stewart, 1990), has been 
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applied to X-ray diffraction studies of o t - A 1 2 0 3 ,  

KZnF3, SrTiO3, CaTiO3, YA103, YFeO3, LaA103, 
K2SiF6, K2PdCI4 and YEBaCuOs. The maximum 
dimension of each crystal specimen was of the order 
of 50 lxm. Crystal dimensions determined optically 
for the absorption corrections in these analyses were 
verified by carefully measuring the specimens with a 
scanning electron microscope. 

For the structures containing atoms with atomic 
number 30 or less, none of the extinction corrections 
determined by the comparison of equivalent reflec- 
tions differed markedly from unity, whereas minimiz- 
ing the residual based on calculated structure factors 
gave what appeared to be appreciable corrections in 
most cases. 

Data derived from strong Mo Ka reflections given 
in Table 1 are for the following compounds containing 
heavier atoms: 

LaA103, a=  b = c= 7.582 (2)/~, pseudocubic, space 
group Fm3m, Rint =0.027 for 6890 measured reflec- 
tions, R=0.029, wR=0.029 for 155 unique reflec- 
tions; 

YA103, a=5.331 (2), b=7.370 (2), c=5.179 (3) A, 
orthorhombic, space group Pnma, Rint=0.056 for 
6890 measured reflections, R = 0.057, wR = 0.021 for 
1122 unique reflections; 

YFeO3, a=5.594 (2), b=7.601 (2), c=5.281 (3)/~, 
orthorhombic, space group Pnma, Rint=0.069 for 
7562 measured reflections, R = 0.062, wR = 0.029 for 
1240 unique reflections. 

The higher Rin t and R indices for the Pnma struc- 
ures reflect the high proportion of systematically weak 
reflections for these distorted perovskite compounds. 

Typically, 2% precision in the extinction factor y 
is achieved with a +25% variation in the path length 
T. The method is not hypersensitive to the weights 
of particular independent reflections. In the absence 
of strong extinction anisotropy, the residuals for each 
of the reflections equivalent to the same independent 
reflection have comparable expansion values, which 
fulfils the premises of the central limit theorem. 

Results for the ten structures have the general 
characteristics that: 

(i) extinction parameters determined as part of the 
structure refinement are hypersensitive to the weights 
of the strong reflections with large wl/2(F)(IFo ] -IFcl) 
residuals, which dominate the least-squares structure 
refinement and have a non-normal distribution; 

(ii) extinction corrections from the comparison of 
equivalent reflections are usually less severe than 
those determined from minimizing R(F), as occurs 
for YA103 and LaAIO3, the first and second examples 
in Table 1. The third example, YFeO3, where the two 
types of correction are comparable, is the only excep- 
tion encountered so far. High significance should not 
be attached to one exception because of the uncer- 
tainties identified in (i). 

Table 1. Miller indices, absorption-corrected intensities 
I, path lengths, extinction factors y for independent 
Bragg reflections from the comparison of equivalent 
reflections and mean extinction factors fi from standard 

least-squares refinements for perovskite structures 

h 

LaAIO3  
- 4  

0 
0 
4 
0 
0 

Y A 1 0 3  
-1  
-1  

1 
1 

-1  
1 

- I  
1 

Y F e O 3  
-1  
-1  

1 
1 

-1  
1 

-1  
1 

k l I T ( / z )  y )7 

0 0 857692 37 0.982 (12) 
- 4  0 852560 36 0.982 (12) 

0 - 4  837064 45 0.978 (14) 
0 0 850656 37 0.982 (12) 
4 0 838469 36 0.982 (11) 
0 4 815571 45 0.979 (14) 

0.92 

- 2  -1  1067376 44 0.931 (23) 
2 -1  1031622 45 0.932 (23) 

- 2  -1  1038928 52 0.921 (26) 
2 -1  969223 59 0.917 (27) 

- 2  1 970630 59 0.916(27) 
- 2  1 1032689 45 0.932 (23) 

2 1 1016095 52 0.922 (26) 
2 1 1089939 44 0.929 (23) 

0.77 

- 2  - 1  425114 34 0.809 (18) 
2 -1  468997 20 0.868 (13) 

- 2  -1  455220 24 0.849 (14) 
2 -1  433802 29 0.829 (16) 

- 2  1 433414 29 0.825 (16) 
- 2  1 474866 20 0.866 (13) 

2 1 476012 24 0.842(15) 
2 1 435901 34 0.804(18) 

0.85 

Fig. l(a) depicts secondary-extinction contribu- 
tions AFext to the structure-factor magnitudes IFol 
determined by analysing intensities of equivalent 
reflections for the small crystal of SrTiO3 (Maslen, 
Spadaccini,/to, Marumo & Satow, 1993b), an ideal 
perovskite with a cubic Pm3m structure. The likeli- 
hood that refinement of that structure would satisfy 
the Gauss-Markov conditions for validity of the least 
squares can be roughly assessed from Fig. l (a) .  If 
extinction corrections are determined by least-squares 
minimization of differences between observed and 
model structure factors, the least-squares refinement 
will be dominated by the few strong reflections for 
which AFext is large. Unless extinction is modelled 
with exceptional accuracy, it is unlikely that their 
residuals will be distributed randomly, as assumed 
when the least-squares principle is invoked. It is cor- 
respondingly unlikely that extinction corrections 
determined using coefficients distributed like those 
in Fig. l (a)  would be reliable. 

Fig. l(b) depicts the difference coefficients AF=  
Ifol-lFcl to SrTiO3 X-ray structure factors after 
experimental extinction corrections from equivalent 
reflections have been applied, to generate Fo values 
by averaging the equivalent reflections. The distribu- 
tion function for AF broadly resembles that for AF~xt 
in Fig. l (a) ,  to within a scale factor. This will result 
in a high degree of correlation of the extinction 
correction with structure-factor changes caused by 
bonding. Because of that correlation, the coefficients 
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determining the extinction correction are biased sig- 
nificantly by the signal that is being measured. It is 
correspondingly difficult to distinguish unreliable 
extinction corrections from errors in measured defor- 
mation densities when the electron density and extinc- 
tion are determined simultaneously. 

Those who prefer the standard least-squares- 
refinement procedure may contend that the form of 
the residuals depicted in Fig. l(b) is due to underesti- 
mation of extinction resulting from undiagnosed bias 
in the determination of r* by the minimization of 
differences between equivalent reflections. That argu- 
ment implies a preference for the hypothesis of 
equality of Fo to F~, for which there is no clear 
theoretical justification, versus that of the equality of 
intensities for equivalent reflections, which is firmly 
supported by theory. 

The low r* vaues determined from equivalent 
intensities measured with Mo Ka radiation for c~- 
A1203 (Maslen, Streltsov, Streltsova, Ishizawa, 
Marumo & Satow, 1993), the ideal cubic perovskites 
KZnF3 and SrTiO3 (Maslen, Spadaccini, Ito, 
Marumo & Satow, 1993a, b) and for K2PdC14 (Hester, 
Maslen, Spadaccini, Ishizawa & Satow, 1993) have 
been checked with diffraction measurements using 
synchrotron radiation at two wavelengths. Scaled 

(l-y) * IFol 

IFol IFcl 

0.5" 

-0.5 

-1.5 

10 : :~/~ " " " ' "  310 40 IFoI 

(a) 

='i 

.ilh ~• =_waa@_$ wmm~ • ~ • 
r ~ <  " ~ . . " "  "do . ~b 4b IFol 

-2' • 

(b) 

Fig. 1. (a) Extinction correction AFext=(1-y)Fo and (b) 
difference density coefficient AF= IFol-IFcl, in electrons, versus 
[Fol for the symmetry-independent reflections in SrTiO3, with y 
determined from the symmetry-related reflections. 

structure factors for the strong reflections were not 
diminished appreciably at longer wavelengths, as 
would be expected if the measurements were affected 
as strongly by extinction as is indicated by the 
standard structure refinements. Because the extinction 
corrections do not change with wavelength, the 
hypothesis that the discrepancies between extinction 
corrections from equivalent reflections and those from 
structure refinements are due to extinction is uncon- 
vincing. A more unified picture of the electron density 
in KZnF3 and SrTiO3 emerges when the Fo values 
corrected for extinction by comparison of equivalent 
reflections are taken at face value (Maslen, 
Spadaccini, Ito, Marumo & Satow, 19983a, b). 

After correcting their MgCO3 data for extinction 
using linear extrapolation with large crystals, 
G6ttlicher & Vegas (1988) reported that Fc was 
usually larger than Fo for the stronger reflections. 
Because this phenomenon also occurs for our small 
perovskite crystals to an extent that is independent 
of wavelength, G6ttlicher & Vegas's explanation of 
the Fo versus Fc discrepancies in MgCO 3 in terms of 
primary extinction must therefore be questioned. 

Concluding remarks 

Minimization of the differences between intensities 
for equivalent reflections allows extinction correc- 
tions to be determined directly from the intensities 
for reflections with the same structure factor but with 
different path lengths. This procedure eliminates any 
dependence of the extinction correction on the struc- 
ture model and the difference density redistribution. 
It requires data with precision sufficient to describe 
the variation of extinction with path length. It can be 
adapted to any extinction model, isotropic or 
anisotropic. 

The formulation presented above is suited to high- 
symmetry structures with a large number of 
equivalent reflections, for which the Gauss-Markov 
conditions for validity in a least-squares procedure 
are approximated closely. For lower symmetry struc- 
tures, equivalent information can be obtained from 
~b scans for the strong reflections, provided the crystal 
shape is sufficiently anisotropic to provide a satisfac- 
tory range of T values for the larger structure factors. 

This research was supported by the Australian 
Research Council. 
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Abstract 

The section method was used to determine the atomic 
surfaces of one-dimensional quasilattices generated 
by means of deflation rules with the scale factor 
/z=~ "-n, where ~-=(1+51/2)/2 and l < n < 3 .  The 
quasilattices satisfy the condition that the distances 
between neighboring points take on just the two 
values of the original Fibonacci quasilattice. Evidence 
suggests that the atomic surfaces are regular fractals, 
whose width depends on both length and frequency 
of periodic inclusions. The frequencies of interpoint 
distances as well as squared Fourier transforms and 
simulated diffraction patterns of the quasilattices have 
been calculated and will be discussed. Generalization 
of the fractal development of atomic surfaces yields 
homometric quasicrystals. 

1. Introduction 
Since the discovery of tiles that force nonperiodic 
tilings (Penrose, 1974, 1979) and of quasicrystals 
(Shechtman, Blech, Gratias & Cahn, 1984), much 
experimental and theoretical work has been focused 
on the discovery of new types of quasicrystals [for a 
review the reader is referred to Steurer (1990)] and 
on several methods for the generation of quasilattices: 

(i) deflation procedures (Penrose, 1974, 1979; de 
Bruijn, 1981; Socolar, 1989); 

(ii) grid methods (de Bruijn, 1981; GShler & 
Rhyner, 1986; Socolar & Steinhardt, 1986; Korepin, 
G/ihler & Rhyner, 1988); 
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(iii) the projection and section method (de Bruijn, 
1981; Kramer & Neri, 1984; Duneau & Katz, 1985; 
Kalugin, Kitaev & Levitov, 1985; Elser, 1986; Bak, 
1986; Janssen, 1986). 

One direction of theoretical research is to increase 
understanding of the higher-dimensional space-group 
symmetries (Janner, 1991; Janssen, 1991, 1992). 
Another direction is to investigate the possibilities of 
decorating the quasilattices in physical space 
(Henley, 1986; Kumar, Sahoo & Athithan, 1986) con- 
structed by means of either the projection or the 
section method. However, surprisingly little attention 
has been paid to modified window functions (the 
projection method) or atomic surfaces (the section 
method) (Zia & Dallas, 1985; Bak, 1986; DiVincenzo, 
1986; Elser, 1986). The purpose of this paper is to 
investigate which kinds of windows (atomic surfaces) 
correspond to quasilattices obtained by means of 
'simple' deflation rules* and what the corresponding 
effects are on the squared Fourier transforms and 
diffraction patterns of these quasilattices. 

2. Deflation rules 

The one-dimensional quasilattices described in this 
paper have been generated by means of deflation 
rules with the scale factor/x = ~--" [ r  = (1 +51/2)/2] 
with 1---n-<3. They satisfy the condition that the 
lengths of line segments joining adjacent points take 

* 'Simple' deflation rule means that every line segment of a given 
length is decomposed in the same way. 
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